首页> 外文OA文献 >Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces
【2h】

Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces

机译:双凹腔可防止本征润湿表面发生灾难性的润湿转变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Omniphobic surfaces, i.e. which repel all known liquids, have proven of value in applications ranging from membrane distillation to underwater drag reduction. A limitation of currently employed omniphobic surfaces is that they rely on perfluorinated coatings, increasing cost and environmental impact, and preventing applications in harsh environments. There is, thus, a keen interest in rendering conventional materials, such as plastics, omniphobic by micro/nano-texturing rather than via chemical make-up, with notable success having been achieved for silica surfaces with doubly reentrant micropillars. However, we found a critical limitation of microtextures comprising of pillars that they undergo catastrophic wetting transitions (apparent contact angles, θr → 0° from θr > 90°) in the presence of localized physical damages/defects or on immersion in wetting liquids. In response, a doubly reentrant cavity microtexture is introduced, which can prevent catastrophic wetting transitions in the presence of localized structural damage/defects or on immersion in wetting liquids. Remarkably, our silica surfaces with doubly reentrant cavities could exhibited apparent contact angles, θr ≈ 135° for mineral oil, where the intrinsic contact angle, θo ≈ 20°. Further, when immersed in mineral oil or water, doubly reentrant microtextures in silica (θo ≈ 40° for water) were not penetrated even after several days of investigation. Thus, microtextures comprising of doubly reentrant cavities might enable applications of conventional materials without chemical modifications, especially in scenarios that are prone to localized damages or immersion in wetting liquids, e.g. hydrodynamic drag reduction and membrane distillation.
机译:憎水表面,即排斥所有已知液体的表面,已被证明在从膜蒸馏到水下减阻的应用中具有价值。当前使用的全憎性表面的局限性在于它们依赖于全氟化涂层,增加了成本和环境影响,并且阻止了在恶劣环境中的应用。因此,人们非常关注通过微/纳米纹理化而不是通过化学补给来疏水化传统材料,例如塑料,从而形成全憎性,对于具有双折角微柱的二氧化硅表面已经取得了显著成功。但是,我们发现包含支柱的微结构的一个关键限制是,在存在局部物理损坏/缺陷或浸入润湿液体中时,它们会经历灾难性的润湿转变(表观接触角,从θr> 90°到θr→0°)。作为响应,引入了双凹腔微结构,它可以在存在局部结构损坏/缺陷时或浸入润湿液中时防止灾难性的润湿转变。值得注意的是,我们的二氧化硅表面具有双凹腔,与矿物油的表观接触角为θr≈135°,而固有接触角为θo≈20°。此外,当浸入矿物油或水中时,即使经过数天的研究,二氧化硅中的双折痕微纹理(对于水而言,θo≈40°)也不会渗透。因此,由双凹腔构成的微纹理可以使常规材料无需化学修饰即可应用,特别是在容易发生局部损伤或浸入润湿液体的情况下,例如。流体动力减阻和膜蒸馏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号